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Introduction
In a recent paper (Arditi et al. 2016), the

authors stated that a proper patch model of pop-
ulation dynamics must obey a basic logical prop-
erty: “If two patches are linked by migration,
and if the migration rate becomes infinite, the
two patches become perfectly mixed among each
other, and the system must behave as a one-
patch model for the total population.” To illus-
trate the issue, they studied the following model:

dN1

dt
¼ r1N1 1�N1

K1

� �
þ b N2 �N1ð Þ

dN2

dt
¼ r2N2 1�N2

K2

� �
þ b N1 �N2ð Þ;

(1)

where Ni with i = 1, 2 being population size in
patch i, ri the local intrinsic per capita growth
rate in patch i, the local carrying capacity in

patch i is Ki, and b is the migration rate constant
from and to any patch in the population. Note
that each equation is the classical formula for
logistic growth plus a term describing migration
between patches.
In Arditi et al. (2016), they noted that the

asymptotic dynamics of system 1 in the case of
perfect mixing (i.e., with b ? ∞) is different
from the asymptotic dynamics of the sum of the
two populations in isolation (i.e., with b = 0). In
particular, they showed that the equilibrium
population size of the system with perfect mixing
is different (either larger or smaller) from the
sum of equilibrium sizes of the isolated popula-
tions. In the limiting but plausible case that the
local populations differed in the value of their
carrying capacities Ki but not in the values of ri,
merging two patches in a single one showed to
be always detrimental for equilibrium popula-
tion size.
Although the analysis is mathematically cor-

rect, it is valid to ask whether the particular
choice for describing migration in model 1 was
the best one for studying such a general ecologi-
cal phenomenon. Apparently, the choice for the
migration model in Arditi et al. (2016) was
made because of two main reasons: (1) This sys-
tem was analyzed previously (Freedman and
Waltman 1977, DeAngelis et al. 1979, Holt 1985;
Hanski 1999, DeAngelis and Zhang 2014, Arditi
et al. 2015); thus, it has some tradition within
the ecological literature, and (2) Arditi et al.
(2016) considered this model as a “natural way”
to represent a two-patch system with logistic
growth.
Nevertheless, there are alternatives to describe

migration among patches, such as the Balanced
Dispersal Model (McPeek and Holt 1992). This
model has been studied chiefly by evolutionary
biologists and presents intuitive behavior, espe-
cially in the case of having patches of very differ-
ent sizes. Moreover, the predictions of this model
are in line with empirical data. In our opinion,
model 1 is neither the most natural nor the best
way to extend the logistic growth model to a
two-patch scenario. Furthermore, we will show
below that the paradoxical results reported by
Arditi et al. (2016) are only a consequence of
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using the specific model 1 and should not be con-
sidered to be a general fact.

Testing the paradox against an alternative
plausible model

Model 1, used in Arditi et al. (2016) to present
the “perfect mixing paradox,” contains as a key
component a passive migration rate from patch i
to patch j, namely b(Ni � Nj). This formulation of
passive migration rate assumes that there will be
a positive flux of migrants from patch i to patch j
whenever the absolute population size in patch i
is larger than the absolute population size in
patch j, no matter the differences in patch size or
quality. This means that, given equal patch qual-
ity, it is possible to have a flux of migrants from a
path with greater absolute population size but
with lesser population density (with a very large
patch size) to a small and more dense patch which
possesses a lower absolute population size
(Fig. 1a). This feature of model 1 represents an
assumption of limited biological realism. Under
the same scenario, a more reasonable assumption
is that migrants should pass from the patch with
higher population density (absolute population

size divided by patch size) to the patch with lower
population density (Fig. 1b).
We propose to re-evaluate the perfect mixing

paradox using a slightly different model. This
system contains a migration term known as the
Balanced Dispersal Model (McPeek and Holt
1992, Diffendorfer 1998; hereafter BDM). It is
both amenable for analysis and contains a more
realistic assumption about the direction of the
net flux of migrants.

dN1

dt
¼ r1N1 1�N1

K1

� �
þ b

N2

K2
�N1

K1

� �

dN2

dt
¼ r2N2 1�N2

K2

� �
þ b

N1

K1
�N2

K2

� � (2)

Here, the flux of migrants is governed by the
differences between the ratios Ni/Ki. We will refer
to the ratio Ni/Ki as the saturation of patch i, which
represents the fraction of the carrying capacity of
patch i that is already occupied by the local pop-
ulation at time t. The value of Ki depends on the
quality of resources in patch i and their quantity,
often proportional to patch area. The direction of
the net flux of migrants in this model captures
the intuition described in Fig. 1b. As shown
below, this model does not exhibit the paradox
presented in Arditi et al. (2016).
An analysis of model 2 reveals that in isolation

(i.e., with b = 0), the system converges to
N1

� ¼ K1; N2
� ¼ K2. This equilibrium is the

same as the one of model 1. By the same reason-
ing used in Arditi et al. (2016), if we assume per-
fect mixing of local populations (i.e., with b ? ∞)
in model 2, it can be shown that for all t > 0,

N1

K1
¼ N2

K2

and, therefore, for calculating the saturation of
both patches combined:

N1 þN2

K1 þ K2
¼ N1

K1
K1
þN1

K2
K1

K1 þ K2
¼ N1

K1
¼ N2

K2
(3)

This shows that total population saturation
under perfect mixing is equal to each of the local
population saturations. Now, let us check
whether the main paradoxical property pre-
sented in Arditi et al. (2016) holds for model 2.
This implies checking whether or not the long-
term total population size under perfect mixing

Fig. 1. Graphical representation of the flux of
migrants in a two-patch population dynamics model.
(a) biologically unrealistic assumption of model 1,
where the net flux of migrants occurs from the less
dense (with higher absolute population size but with a
much larger patch size) to the denser patch (b) more
realistic assumption, with migrant flux from the more
dense to the less dense patch.
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is equal to total population size in isolation. Add-
ing both equations of system 2 and using the
Eqs. 3, which are valid for the perfect mixing sce-
nario, yield the following:

dNT

dt
¼ dN1

dt
þ dN2

dt

¼ ðr1N1 þ r2N2Þ 1�NT

KT

� �

¼ r1K1 þ r2K2

KT
1�NT

KT

� �
NT

¼ �r 1�NT

KT

� �
NT

(4)

where NT = N1 + N2, KT = K1 + K2 and �r ¼
ðr1K1 þ r2K2Þ=KT.

It is clear that, at equilibrium, the total popula-
tion size under perfect mixing (i.e., with b ? ∞)
is KT = K1 + K2. Thus, using model 2 resolves the
main paradoxical behavior presented in Arditi
et al. (2016) for mixed patches. Note also that in
the logistic equation for NT the total intrinsic
growth rate �r is the weighted average of the local
intrinsic growth rates, with weights K1 and K2. In
the case that the patches differ only in their
intrinsic growth rates ri and do not differ in their
carrying capacities (i.e., K1 = K2), the total intrin-
sic growth rate reduces to �r ¼ ðr1 þ r2Þ=2. Also, if
r1 = r2 then �r ¼ r1 ¼ r2.

Another issue presented in Arditi et al. (2016) is
what they call an “apparent spatial dependency”
of the equation parameters when the dynamics of
the total population is represented by the Verhulst
equation. The undesirable model property in a
multi-patch context is that the value of the self-
interference coefficient in the quadratic term
decreases with number of patches S:

dNT

dt
¼ r̂NT �

�a
S
NT

2 (5)

with r̂ ¼ ðr1 þ r2Þ=2. To solve this issue, in Arditi
et al. (2016), it is suggested to treat population
size as density, in terms of mean population size
per patch �N ¼ NT=S. When doing so, Eq. 5
becomes

d�N
dt

¼ r̂�N � �a �N2 (6)

which follows the Verhulst equation. Thus, the
form of the equation is invariant in the number

of patches in the metapopulation system, and
their parameters (�r and �a) are simply the average
of the corresponding local patch parameter
values.
For the BDM and using the same reasoning,

the average population in S well-mixed patches,
�N ¼ NT=S, exhibits the following dynamics:

d �N
dt

¼ �r 1�
�N
�K

� �
�N (7)

with �K ¼ KT=S; that is, the carrying capacity of
the average population is the average of the local
carrying capacities. Like Eq. 6, Eq. 7 is also
invariant in the number of patches. Also, their
parameters (�r and �K) are the weighted and arith-
metic means, respectively, of the corresponding
local patch parameters. Therefore, we see no rea-
son to favor the Verhulst logistic equation over
the classical formulation with the familiar r � K
parameterization in a multi-patch context, as
argued in Arditi et al. (2016).

Considerations about the migration model
The BDM was introduced in McPeek and Holt

(1992), and analyzed in the context of evolution
of dispersal strategies in Diffendorfer (1998) and
Cressman and K�rivan (2013). This model is well
understood, and it has been shown to lead to an
ideal free distribution of individuals among
patches, which is an evolutionary stable strategy
(McPeek and Holt 1992, Cressman and K�rivan
2013). Also, the BDM has been found to agree
with empirical data: In Diffendorfer (1998), the
author found that per capita emigration rates of
small mammals related inversely with mean
population abundance, a surrogate of patch
carrying capacity. According to Englund and
Hambck (2004a), for terrestrial insects, there is
inverse relationship between per capita emigra-
tion rates from patches and patch size. This trend
also holds for emigration rates of stream inverte-
brates between one-dimensional patches (Eng-
lund and Hambck 2004b). Also, immigration
rates per unit patch area were found to be inver-
sely related to patch size (Englund and Hambck
2007). Finally, according to Tattersall et al. (2004),
empirical “data suggest that the balanced disper-
sion model best described wood mouse dynam-
ics in most habitats.” All these empirical findings
are consistent with model 2. Moreover, recent
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empirical evidence suggests that local population
density remains constant across patch area,
captured here by parameter K (Hamb€ack and
Englund 2005). Also, the constant density
assumption is considered to be the standard in
metapopulation theory (Hanski 1991, Matter
1999). In mathematical terms, this allows us to
assume that

N1

K1
¼ N2

K2
(8)

which is exactly what happens with model 2
under perfect mixing, that is, with b ? ∞. This
equality plays a key role to solve the perfect
mixing paradox. Eqs. 3 and 4 are valid for all
migration models that imply Eq. 8. Therefore,
all those migration models will not exhibit the
paradox.

Note that in model 1, the probability of an
individual to migrate outside its patch is inde-
pendent on patch capacity, population size or
density. In contrast, in model 2 it is implicitly
assumed that the emigration probability is a
function of the carrying capacity of the patch, as
found in Tattersall et al. (2004) for mice popula-
tions, but not on the population size. This
assumption is simple and leads to convenient
mathematical properties. One generic migration
model that captures the above assumption is

b N1f K1ð Þ �N2f K2ð Þð Þ

with f being a continuous and monotonically
decreasing function. Under perfect mixing,
N1f K1ð Þ ¼ N2f K2ð Þ. Then,

N1

N2
¼ K1

K2
¼ f K2ð Þ

f K1ð Þ :

Therefore f ðK2Þ ¼ ½K1f ðK1Þ�=K2. Since the
right-hand side must be a function of exclusively
K2, it must be the case that K1f(K1) is constant val-
ued. Thus, f(K1) = C/K1, for some arbitrary con-
stant C. This is exactly the BDM.

If we would consider the assumption that
migration probability depends on local popula-
tion saturation N/K instead of depending solely
on carrying capacity,

b N1f
N1

K1

� �
�N2f

N2

K2

� �� �
: (9)

Then under perfect mixing, N1f N1=K1ð Þ ¼
N2f N2=K2ð Þ. Thus,

N1

N2
¼ K1

K2
¼

f N2
K2

� �

f N1
K1

� � ¼ 1:

Therefore K1 = K2. This implies that a migra-
tion model such as model 9 will not exhibit the
perfect mixing paradox only in a scenario of
equally sized patches. Nevertheless, if all patches
have the same carrying capacity (size), under per-
fect mixing this model is equivalent to the BDM.

Discussion
In Arditi et al. (2016), it is argued that the logis-

tic equation, in its usual r � K parameterization,
presents some undesirable properties when used
in a multiple patch context. These properties con-
figure what those authors called the “perfect mix-
ing paradox.” Arditi et al. (2016) also claimed that
the Verhulst formulation of the logistic growth
model dN/dt = rN � aN2 is less prone to these
paradoxical features, as compared to the familiar
Lotka formulation dN/dt = rN(1 � N/K), when
generalized to a multi-patch environment. They
conclude, on the basis of the analysis of these
models extended to a metapopulation context by
including a specific migration function, that the
Verhulst formulation should be favored over the
Lotka one and that the term “carrying capacity” is
misleading and should be abandoned in favor of
the more correct “equilibrium density.”
The paradoxical behavior of the metapopulation

version of the Lotka–Gause model rests, according
to Arditi et al. (2016), on two main features that
were exemplified considering a two-patch environ-
ment as a study case. The first undesirable prop-
erty is that the total mixed population equilibrium
KT is in general different from the sum of the equi-
libria in the isolated patches K1 + K2. This major
shortcoming of the analyzed model led Arditi
et al. (2016) to state that using the term “carrying
capacity” is incorrect except in specific contexts.
The second undesirable feature is the parameter
dependence on the number of patches in the sys-
tem, exhibited by the Verhulst form of the logistic
growth model for the total population size. How-
ever, when population size is expressed as mean
(per patch) abundance the model parameters can
be calculated as the average of the local parameters
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and do not depend on the number of patches.
Nevertheless, in Arditi et al. (2016) the claim is that
this scale invariance is only exhibited by the Ver-
hulst model and this gives it an advantage over
the Lotka–Gause model.

In this paper, we show that the paradoxical
behaviors presented in Arditi et al. (2016) belong
only to the specific variant of the Lotka–Gause
model they analyzed. Also, we suggest that the
model used in Arditi et al. (2016) is not the best
choice regarding biological realism. In fact, we
analyze a model as simple as the one they used
(two state variables, five parameters) that is argu-
ably more realistic and it is free of the alluded
paradoxes exhibited by the Arditi’s extensions to
both the Lotka–Gause and the Verhulst logistic
models. Moreover, there is compelling empirical
evidence in support of using this model in a vari-
ety of situations.

The most remarkable advantage of model 2 is
that, unlike both logistic forms used in Arditi et al.
(2016) in their analysis, total population size at
equilibrium of a perfectly mixed metapopulation is
equal to the sum of local equilibria. This feature
immediately invalidates the criticism posed over
the meaning and usefulness of the carrying capac-
ity term. In model 4, global intrinsic growth rate of
the metapopulation is not the arithmetic average
of local growth rates, but it is the weighted average
of the local growth rate parameters. This is reason-
able since under perfect mixing among patches,
the ratios Ni/Ki are equated while their absolute
abundances are not. So, it is possible to have
patches with contrasting amount of resources (e.g.,
space or nutrients) and therefore with unequal
population abundances, say 3 individuals in patch
1 and 1000 individuals in patch 2. Under this sce-
nario, global intrinsic growth rate could not be the
arithmetic mean of the local growth rates, but it
should be closer to the parameter value of the lar-
ger population. In the case of the Arditi’s model,
the absolute population abundances tend to be the
same under perfect mixing and so the arithmetic
mean and weighted mean are the same. Regarding
the second issue stressed in Arditi et al. (2016), we
showed that model 4 does not suffer from a lack of
scale invariance and that the dynamics of the per
patch mean size of the metapopulation is fully con-
sistent with the well-known logistic dynamics
within a single patch.

In sum, we show here that the criticisms posed
in Arditi et al. (2016) to the familiar form of the
logistic equation attributed to Lotka and Gause
are only valid for the particular way in which
those authors extended that equation to the
multi-patch scenario. We also suggest that their
model is not always the best choice among other
plausible models of the same complexity and
that their criticisms against the usefulness of the
carrying capacity as a measure of patch size or
richness are not completely justified. However,
the paper by Arditi et al. (2016) has the value of
highlighting that modeling population, meta-
population or community dynamics requires
more attention than is usually given to and that
models should not be applied to any scenario
without a rigorous theoretical analysis of their
properties.
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