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A B S T R A C T

Understanding the processes and consequences of habitat fragmentation is highly relevant since it represents a
serious threat to biodiversity. However, fragmentation includes several facets that are difficult to dissect, such as
loss of habitat connectivity, edge effects, and habitat loss. In this study, we analyze by mathematical and
computational means a single isolated component of habitat fragmentation: the loss of connectivity. The main
novelty of our approach is that we consider the entire temporal process by which a continuous habitat gets
progressively divided into two isolated patches. For this purpose, we present a new mathematical model. Our
results indicate that, in line with empirical evidence, connectivity loss derived from habitat fragmentation could
lead to either a decrease or an increase in total population abundance during the process. We give some con-
ditions under which the mentioned effects should occur. We conclude that connectivity loss could exert strong
influences on non-equilibrium populations.

1. Introduction

Biodiversity is being currently depleted at unprecedented rates
(Cardinale et al., 2012; Butchart et al., 2010). One of the main causes of
such crisis is the fragmentation of habitat (Wu, 2013), that consists of
the division of a continuous habitat into smaller isolated pieces of ha-
bitat immersed into a matrix of human-disturbed land. Fragmentation
accounts for up to 75% biodiversity loss, concurrent with a severe de-
pletion of ecosystem services (Haddad et al., 2015).

Habitat fragmentation is not a simple phenomenon. At least, there
are three main sources of disturbance generated by such a process: (1)
loss of connectivity, (2) habitat loss, and (3) edge effect. Connectivity
loss (or fragmentation per se Fahrig, 2003) is understood as a process in
which a single, large patch is subjected to one or several divisions
within it that leads to the formation of several smaller disconnected
patches. The geographical isolation of the remaining habitat impedes
that certain species migrate between patches. Habitat loss results from
the replacement of original, suitable habitat into matrix, hostile to most
native species, in which the fragments get immersed. Total area,
summed over all patches, get smaller than original area. Edge effect
results from increasing the length of border as a consequence of habitat
division. Borders constitute the contact zone with the matrix, and sur-
vival of species often decrease there because of an increased occupation

of the matrix and because of increased antagonistic species interactions
with natural enemies. The relative contribution of each of the compo-
nent factor to the total adverse effect reported for the fragmentation
complex remains controversial. However, available evidence suggests
that edge effect and habitat loss exert the largest effects and that the
consequences of connectivity loss could be of minimal impact, and in-
deed could also enhance population abundance (Fahrig, 2003).

As stressed in Fahrig (2003), our understanding of the population
consequences of habitat fragmentation has been hampered by the lack
of distinction between the components of the fragmentation process.
Besides this, most previous analytical studies have studied habitat
fragmentation through comparing two static states: continuous versus
fragmented habitat, and have not dealt with this phenomenon as a
genuine process. In the course of this process, connectivity loss pro-
gressively limits species dispersal, shaping population dynamics prior to
complete isolation of remnant patches (see Fig. 1).

In this study we isolate a single factor within the fragmentation
phenomenon: habitat connectivity loss, to analyze its consequences on
single-species population dynamics. Moreover, and unlike previous
work, we address the continuous nature of the fragmentation process.
For this, we present and analyze mathematically a single-species po-
pulation dynamics model that covers the whole succession of system
states (from a to c in Fig. 1), in contrast to prior models that usually
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compare states a versus state c only, disregarding the population dy-
namics driven by the processes occurring during fragmentation. Our aim
is to understand under which circumstances if any, connectivity loss by
itself drives either transient or long-term changes in population abun-
dances.

The rest of this paper is organized as follows: In the next section, we
present our model step by step, ending with the general equations
which represent the rates of changes in abundance when a population is
being subjected to a loss of connectivity between two subregions. Then,
we present the main results of a mathematical analysis of our model.
Next, we show numerical results to show the model behavior in a po-
pulation simultaneously subjected to habitat fragmentation and an in-
dependent periodic perturbation. We end this paper with a discussion of
our results.

2. The model

We will assume a deterministic and continuous-time dynamics. If
the population is located in a habitat represented by a set tΩ( ) of the
space at time ≥t 0 whose measure (e.g. area) is given by m (·), and the
population abundance is denoted by x t( ), then the population growth
rate is governed by the differential equation

′ =x t x t r D( ) ( ) [ ],tΩ( ) (1)

where r [·] is the time-varying per capita growth rate as a function of
population density D tΩ( ), given by the population abundance per unit
area, i.e., =D x t m t( )/ (Ω( ))tΩ( ) . There is sufficient evidence of density-
dependent negative feedback (see Hixon et al., 2002; Sinclair, 1989;
Tanner, 1966), so that we will assume r [·] being a decreasing function.

If A t( ) is a subset of tΩ( ) and =B t t A t( ) Ω( )\ ( ) is its complement,
then the total population abundance is equal to the sum of the abun-
dances in each subset, that is, +x xA t B t( ) ( ). This equality expressed in
terms of the growth rates is

′ = ′ + ′ = +x x x x r D x r D[ ] [ ].A t B t A t A t B t B t( ) ( ) ( ) ( ) ( ) ( ) (2)

If DA (·) and DB (·) are assumed to be equal to DΩ(·), then eqn. (2) reduces
to eqn. (1).

On a time interval T[0, ], >T 0, let us assume that a population is
being subjected to the process of fragmentation during a subinterval
t t[ , ]i f , < < <t t T0 i f . This population is located in a habitat re-
presented in mathematical terms by a region (an open, connected,
bounded and non-empty set) Ω of ℝ2. To represent the division of a
continuous habitat into two isolated patches by the development of a

discontinuity, we assume that Ω is the union of three disjoint sets: two
regions A and B, and a common frontier ⊂ ∂ ∩ ∂A BΓ (sign ∂ indicates
the boundary of), which is an arcwise connected set. Moreover, we
assume that Γ is the graph of a regular and simple curve →α t t: ( , ) Ωi f
such that +α t( )i and −α t( )f exist in ℝ \Ω2 .

Writing = ∈t α s s t tΓ( ) { ( ): ( , )}i with ∈t t t( , )i f , we have that, at any
moment t of the process, the habitat is represented by the set

=t tΩ( ) Ω\Γ( ). Note that we have a continuous habitat, i.e., =tΩ( ) Ω for
≤t ti because =+t ϕΓ( )i , and a fragmented habitat, i.e., = ∪t A BΩ( ) for
≥t tf because =−tΓ( ) Γf . Then, at ≤t ti the population is in a unique

patch Ω, but after the final instant, ≥t tf , the population is distributed
over two isolated patches A and B, see Fig. 1. Note that the loss of
habitat at time ∈t t t( , )i f is tΓ( ), a set of measure (area) zero. Therefore,
our model considers only the loss of connectivity without habitat loss
and without decreased habitat quality (e.g. expressed as edge effect).

Our interest is to develop a unified model equation for the popu-
lation dynamics before, during, and after the fragmentation process,
which constitute the main novelty of this modeling exercise. Now we
present equations for each of the major phases involved in the frag-
mentation process, and then the general model for the entire process.

Continuous habitat ( ≤ ≤t t0 i): In this time interval, the sub-
regions A and B are only a conceptual division of Ω and are fully
connected, see Fig. 1a. If we assume that areas of measure zero never
contain any individuals, then the total population growth rate is

+ ′ = + ∈x x x x r D t t( ) ( ) [ ], [0, ],A B A B iΩ (3)

which is another form of Eq. (1).
Fragmented habitat ( ≤ ≤t t Tf ): In this time interval, the zones A

and B are physically divided by Γ and isolated from each other to the
migration of population members. So, they form two disjoint patches,
see Fig. 1c. Nevertheless, there has been no loss of habitat in the process
because =m (Γ) 0. Then we have two decoupled ordinary differential
equations governing the growth, one for each patch. That is,

⎧
⎨⎩

′ =
′ =

∈
x x r D
x x r D

t t T
[ ],
[ ],

[ , ].A A A

B B B
f

(4)

Transitional phase ( < <t t t )i f : To model the population growth rate
during the whole process of habitat fragmentation (see Fig. 1b), we
present the following differential system:

⎧
⎨⎩

′ =
′ =

∈∪

∪

x x r D
x x r D

t t t
[ ]
[ ]

( , ),A A A B t

B B A t B
i f

( )

( ) (5)

where ∪A B t( ) (and ∪A t B( ) ) is an extension of the zone A (and B) in
a subset B t( ) of B (and A t( ) of A). To calculate the population density
at A, B t( ) represents the area of influence of the demographic type of B
at the instant t . The same for B t( ) respect to A. Note that A (·) and B (·)
are functions from T[0, ] to the set of parts of A and B respectively, such
that ⊂A t A t( ) ( )2 1 (and ⊂B t B t( ) ( )2 1 ) if ≤ ≤ ≤t t t ti f1 2 . In addition, we
have =A t A( ) and =B t B( ) for ∈t t[0, ]i , and = =A t B t ϕ( ) ( ) for
∈t t T[ , ]f . In this way, the system (5), with ∈t T[0, ] becomes a gen-

eralization of the whole fragmentation process modeled by (3)–(5).

2.1. On the per capita growth rate

The per capita growth rate ∞ → − ∞ ∞r: [0, ) ( , ), as a function of
the population density, assuming no migration rates, is the difference
between per capita birth rate b and per capita death rate d, where

∞ → ∞b d, : [0, ) [0, ) are assumed to be analytic on their whole do-
main. Developing b [·] and d [·] in Maclaurin series, we obtain

∑ ∑= + + = + +
≥ ≥

b D b b D b
k

D d D d d D d
k

D[ ]
!

and [ ]
!

,
k

k k

k

k k
0 1

2
0 1

2

(6)

where bi and di, ∈i {0, 1}, are positive numbers and >b d0 0. We assume
also that b [·] is strictly decreasing and d [·] is strictly increasing, so that

Fig. 1. Three snapshots of the fragmentation process through time, occurring on the
habitat Ω: (a) state of the habitat before the beginning of the fragmentation process, tΩ( )
composed of subregions A, B and a shared border Γ; (b) state of Ω in a time just after the
initiation of the fragmentation process, where Γ has lost a part tΓ( ) of border, and (c)
habitat state after the fragmentation process was finished, where tΩ( ) is the union of
disjoint fragments A and B, and the shared border Γ has disappeared.
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there is a density carrying capacity D*Ω such that =b D d D[ *] [ *]Ω Ω .

2.2. Population densities in the transitional phase

To express ∪DA B t( ) and ∪DA t B( ) of (5) in other more interpretable
terms, note that

=
∪

=
+
+∪

∪D
x

m A B t
x t x t

m A m B t( ( ))
( ) ( )

( ) ( ( ))
.A B t

A B t A B t
( )

( ) ( )

Introducing the hypothesis that the population in the region B t( ) is
a fraction of the abundance in B equal to the ratio of the sizes of the
territories, we obtain

=
+
+∪D

x t η t x t
m A η t m B

( ) ( ) ( )
( ) ( ) ( )

,A B t
A B

( )
(7)

with =η t m B t m B( ) ( ( ))/ ( ).
Similarly, the density ∪DA t B( ) is given by

=
+
+∪D

x t ξ t x t
m A ξ t m B

( ) ( ) ( )
( ) ( ) ( )

,A t B
A B

( )
(8)

where =ξ t m A t m A( ) ( ( ))/ ( ).

2.3. The unified equation

Replacing the population densities (7) and (8) in (5), we obtain
explicitly the non-autonomous system of differential equations

⎧

⎨
⎪

⎩⎪

′ = ⎡
⎣

⎤
⎦

′ = ⎡
⎣

⎤
⎦

∈

+
+

+
+

x x r

x x r
t T

,

,
[0, ],

A A
x η t x

m A η t m B

B B
x ξ t x

m A ξ t m B

( )
( ) ( ) ( )

( )
( ) ( ) ( )

A B

A B

(9)

where →η ξ T, : [0, ] [0, 1] are decreasing functions, such that
= =η t ξ t( ) ( ) 1 for any ∈t t[0, ]i and = =η t ξ t( ) ( ) 0 for any ∈t t T[ , ]f ).
The functions η (·) and ξ (·) can be interpreted as a measure of the

degree of connectivity between the regions A and B at time t . A value of
one for η (·) and ξ (·) means full connectivity between these subregions,
and a value of zero means complete isolation between them due to the
fragmentation. Hereafter, for simplicity, we assume that η (·) and ξ (·)
are equal and differentiable.

3. Main results

Theorem 1. Let x x( (·), (·))A B be a solution of (5) such that
=x t m A x t m B( )/ ( ) ( )/ ( )A i B i . Then =x t m A x t m B( )/ ( ) ( )/ ( )A B for each

∈t t t( , )i f . In addition, +x t x t( ) ( )A B satisfies (3).

Proof. The proof is given in Appendix A.
Biological interpretation 1: The equality condition in Theorem 1 in-

dicates that when the regions A and B have the same population den-
sities at =t ti, these densities persist over time during the fragmenta-
tion. In this case, the fragmentation process exerts no effect on the total
population abundance.

Theorem 2. Let x x( (·), (·))A B be a solution of (5) such that
≠x t m A x t m B( )/ ( ) ( )/ ( )A i B i , χ (·) a solution of (3) on t t( , )i f such that

= +χ t x t x t( ) ( ) ( )i A i B i and

⎜ ⎟= − ⎛
⎝

− ⎞
⎠

P x x t x t x t x t
m A

x t
m B

( , )( ) ( ( ) ( )) ( )
( )

( )
( )

.A B A B
A B

If >P x x t( , )( ) 0A B i (resp. <), then > +χ t x t x t( ) ( ) ( )A B (resp. <) for
each ∈ +t t t ε( , )i i , some >ε 0.

Proof. The proof is given in Appendix B.
Biological interpretation 2: Theorem 2 states that the fragmentation

process could generate a decrease in population abundance, at least at
the beginning of the process, particularly when

< <m m x t x t m mmin{1, / } ( )/ ( ) max{1, / }.A B A i B i A B

In addition, Theorem 2 shows the counterintuitive fact that there
exist conditions under which the fragmentation process enhances the
total population abundance for some time interval.

4. Highlighting consequences of fragmentation through
numerical simulations

In order to simulate numerically the trajectories of population
abundance determined by (9), we will consider a specific case for the
per capita growth rate r [·], which is the well known Verhulst-Pearl
logistic form. When the terms of higher order ≥k 2 are null in (6), then

= +b D b b D[ ] ·0 1 and = +d D d d D[ ] ·0 1 . Thus the per capita rate of
growth, = −r D b D d D[ ] [ ] [ ], is determined by the expression

= −r D r r D[ ] ·0 1 , where = −r b d0 0 0 and = −r d b1 1 1, with >d b1 1, be-
cause ′ = − <r D b d[ ] 01 1 .

Due to the existence of the density carrying capacity D*Ω, it is natural
to think of a population level KΩ that determines this density. So,

=K m r r(Ω)( / )Ω 0 1 such that =r K m[ / (Ω)] 0Ω is the carrying capacity of
Ω. Then, Eq. (9) becomes

⎧

⎨
⎪

⎩⎪

′ = −

′ = −
∈

+
+

+
+

{ }
{ }

x r x

x r x
t T

1 ,

1 ,
[0, ],

A A
x η t x
K η t K

B B
ξ t x x
ξ t K K

0
( )
( )

0
( )
( )

A B
A B

A B
A B (10)

where =K m C r r( )( / )C 0 1 , ∈C A B{ , }, are the carrying capacities of the
subregions once the habitat fragmentation is completed.

In order to describe the global dynamics defined by the non-au-
tonomous system (10), note that we have only the natural equilibria
(0, 0) and K K( , )A B , which are also equilibria of (3) and (4). In asymp-
totic terms, we have Eq. (4), where the origin is a repellor and K K( , )A B

is globally asymtotically stable.
To visualize the dynamics on the interval t t( , )i f , we divide the set of

states into six zones according to Table (11) and Fig. 2, where −L ( )
(respectively +L ( )) means to be below (respectively above) the line

+ = +L x x K K: A B A B.

Then, given a point x x( , )A B in some Z i( ), = ⋯i 1, ,6, at some time
∈t t t( , )i f , we present in Table (12) an overview of the signs of ′x t( )A and
′x t( )B at the same instant.

(12)

In (12), a double sign (separated by &) in an entry means that the
first sign corresponds to a first subinterval, and the next sign in the

(11)
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complementary interval, see Fig. 2.
Note that reordering the terms of (10), the signs of ′xA and ′xB are

given respectively by the signs of = − + −F K x η K x( ) ( )A A B B and
= − + −G η K x K x( ) ( )A A B B .
In Z (1) we have − >K x 0A A and − >K x 0B B , which are positive

numbers. In Z (2) the argument is similar and ′xA and ′xB are negative.
In Z (3), we have <x KA A, >x KB B and + − + >K K x x( ) ( ) 0A B A B .

Since F is equal to + − + + − −K K x x x K η[( ) ( )] ( )(1 )A B A B B B , we ob-
tain that ′xA is positive. In order to determine the sign of ′xB, note that
= − −λ x K K x( )/( )B B A A is a positive number less than one. So, there

exists ∈t ]0, 1[1 such that if <t t1 (respectively >t t1), then >η λ (re-
spectively <η λ). Since = − −G η λ K x( )( )A A , we have ′ >x 0B (re-
spectively <) if <t t1 (respectively >).

In Z (4), we have that F is equal to
− + − + − − − −η x x K K η x K η[( ) ( )] (1 )( )(1 )A B A B A A , a negative
number, and so ′ <x 0A . On the other hand, = − − <λ K x x K( )/( ) 1B B A A

and = − −G λ η x K( )( )A A . Note that <t t1 (respectively>) implies >η λ
(respectively <), i.e., ′ <x 0B (respectively >).

Let us define = − −q K x x K( )/( )A A B B . In Z (5), we have
= −F K x( )B B and G equals − + − +x x K[( ) (A B A

− − −K η K x)] (1 )[ ]B A A . Then ′ <x 0B and ′ <x 0A or ′ >x 0A depending
on whether <q η or >q η, that is, <t t2 or >t t2, where =η t q( )2 .

Finally, in Z (6), since F and G are, respectively, − −K x η q( )( )B B
and − −K x ηq( )(1 )B B , it follows that ′ >x 0B and ′ >x 0A (respectively
<) if <t t2 (respectively >).

Let us consider an interval of fragmentation =t t[ , ] [20, 70]i f as a
subset of a horizon time =T[0, ] [0, 100]. We take the parameters that
follow:

b0 d0 b1 d1 m A( ) m B( )

2/10 1/10 1/100 4/100 180 30

Note that with these parameters, =r 1/100 , =r 3/1001 =K 600A and
=K 100B .
Assuming a linear connectivity function η
= = − −t ξ t t t t t( ) ( ) ( )/( )f f i , ∈t t t[ , ]i f , and initial conditions
=x (0) 100A and =x (0) 50B , Fig. 3 compares the total abundances of the

cases with and without fragmentation. Note that, =x (20) 312A and
=x (20) 156B then 1/ = < <m B m A x x6 ( )/ ( ) (20)/ (20) 1B A , which is

consistent with Theorem 2 part (b).
More details on the behavior of an alternative model of r [·] are

given in Appendix C.
From Theorem 2 it follows that the largest effects exerted by the

fragmentation process on population abundances are exhibited well
before the system reach the steady state. In this section, we analyze by
numerical means how habitat fragmentation affects the long-term be-
havior of a population that is periodically perturbed in its death rate at
migration instance. For this goal, we will use a modified version of
system (10):

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

′ = −

′ = −

⎫

⎬
⎪

⎭⎪
≠ ∈ ⊆

= − + −
= − + −

⎫
⎬⎭

= ∈ ⊆

+
+

+
+

+

+

( )
( )

x t r x t

x t r x t
t τ t t T T

x t p x t t μx t
x t q x t t μx t

t τ t t T T

( ) ( ) 1

( ) ( ) 1
, [ , ] [ , ]

( ) (1 ) ( ) qx ( ) ( )
( ) (1 ) ( ) px ( ) ( )

, [ , ] [ , ]

A A
x t η t x t

K η t K

B B
x t η t x t

K η t K

k i f

A A B A

B B A B
k i f

0
( ) ( ) ( )

( )

0
( ) ( ) ( )

( )

0 1

0 1

A B
A B

A B
A B

(13)

Fig. 2. Left: Some trajectories defined by (10) with different initial states in six zones according to the signs of −x KA A, −x KB B and + − +x x K K( ) ( )A B A B . Right: Case without
fragmentation with the same initial conditions.

Fig. 3. The possibility that the total abundance +x x(·) (·)A B in the fragmentation model (green line) is greater than the abundance without fragmentation (red dashed line), at least
during the interval of fragmentation [20, 70]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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This is an impulsive system (Córdova-Lepe, 2007; Del Valle et al.,
2012) that exhibits logistic population growth, with the same intrinsic
growth rate r0 in the two patches. At certain time instants τk equally
spaced during the transition phase of the fragmentation process, frac-
tions p and q of subpopulations in A and B migrate to the other patch,
and some fraction μ in each subpopulation dies as a consequence of the
perturbation. With = = =μ p q 0, system (13) reduces to system (10).

Using the time horizon ∈t T T[ , ]0 1 , a linear connectivity function
=

−
−η t( )

t t
t t

f

f i
with time values, =T 00 , =t 0i , = =T t 200f1 , where

=r 1/100 , =r 3/101 , and initial condition =x T( ) 100A 0 , =x T( ) 50B 0 , we
performed computer simulations of system (13) to show some model
behaviors (Fig. 4). Fig. 4 shows how the negative effect of fragmenta-
tion on population abundance increases with perturbation intensity (μ).
Besides this, the time interval between successive perturbation events
( τΔ ) also exerts a marked influence on the magnitude of the fragmen-
tation impact on population abundance. The range of τΔ for which
fragmentation exerts its stronger negative effect increases with μ, from
near zero for the lowest μ values to intermediate values of about 20–40
time units for highest μ values. These effects exerted by μ and τΔ were
stronger with higher values of migration rates p and q (Fig. 4c and d)
and with higher differences between carrying capacities KA and KB
(Fig. 4a and c). Note also that for low μ and high τΔ values, we found
that habitat fragmentation increased population abundance summed
over the two patches, even so this effect was slight in magnitude
(Fig. 4a–d).

5. Discussion

The analytical results of our study reveal that, in general, habitat
fragmentation acting only through suppressing connectivity among
regions affects the abundances of involved populations during some
time interval. A restricted case does not follow this rule: when initial
population density is homogeneous across habitat regions that will get
isolated. Whenever population density is different between regions A

and B at the beginning of the fragmentation process, population
abundances will be either enhanced or depleted by fragmentation, be-
fore the population reaches its steady state.

Based on our analysis we conjectured that, given that the effects of
habitat fragmentation are mostly exhibited in a transient phase of po-
pulation dynamics, they should be especially important in populations
whose asymptotic dynamics is delayed by perturbations exerted during
the fragmentation process. Therefore, we performed numerical simu-
lations on a version of our mathematical model aimed at highlighting
the effects of habitat fragmentation in perturbed populations, in a
sample of the parameter space. Our numerical results confirmed our
expectations, showing that habitat fragmentation via connectivity loss
could exert both negative and positive effects on total population
density, although the positive effects are expected to be of low in-
tensity. In perturbed populations, strong adverse effects of habitat
fragmentation are evident. The magnitude of these effects was mark-
edly dependent on perturbation intensity and frequency, but also on
migration rates and heterogeneity in the carrying capacities of the
patches. In general terms, our analytical and numerical results suggest
that habitat fragmentation in their more restricted sense (connectivity
loss), independent on habitat loss, edge effects and other related pro-
cesses, exert important -and most likely adverse- effects on population
abundances.

The process of habitat fragmentation involves a set of phenomena
besides the isolation of habitat regions per se. Among the most im-
portant ones, habitat loss and edge effects are known to exert severe
effects on biodiversity (Fahrig, 2003; Haddad et al., 2015). Never-
theless, the empirical studies show conflicting results respect to the
main effect of habitat fragmentation and connectivity loss as a driver of
biodiversity changes (Debinski and Holt, 2000; Ibá nez et al., 2014). In
particular, it has been found that connectivity loss, once isolated from
habitat loss and degradation, can exert either negative, null or indeed
positive effects on populations (Caley Julian et al., 2001; Fahrig, 2003),
as our model predicts. However, for a large portion of the parameter

Fig. 4. Long-term decrease in population abundance driven by the habitat fragmentation process, in a population subjected to periodical perturbation on its death rate. The x -axis shows
the time interval between successive perturbation events, τΔ , and the y-axis shows the intensity of the perturbation, μ. Negative/positive values (see color scale) indicate decreases/
increases in population abundances integrated over the last fifty time steps. Parameter values as follows. (a) = = = =p q K K0.1, 600, 100A B ; (b) = = = =p q K K0.1, 200, 500A B ; (c)
= = = =p q K K0.2, 600, 100A B ; (d) = = = =p q K K0.2, 200, 500A B . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the

article.)
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space, habitat fragmentation via loss of connectivity exerts negative
effects on population abundance. This was particularly evident when
the simulated population was subjected to periodic perturbations, so
extending its transient phase.

Recently. Haddad et al. (2015) reviewed the best available experi-
mental results reporting various ecological effects of fragmentation,
including population abundances of species. The experiments were
conducted on evergreen broadleaf forests (The Biological Dynamics of
Forest Fragments Project BDFFP, Brazil, initiated in the early 1980s and
The Wog Wog Habitat Fragmentation Experiment WW, Australia, in-
itiated in 1987), shrub (Kansas Fragmentation Experiment KFE, USA,
initiated in 1984) and grassland (Savannah River Site experiment SRS,
USA, initiated in 1993 and The Moss Fragmentation Experiments MFE,
UK and Canada, initiated in 1995) ecosystems (see details in Haddad
et al., 2015). All these studies reported results from long-term experi-
ments (>20 years) which covered entire ecosystems. From a total of
eight results on population abundances, six of them gave negative ef-
fects while other two gave positive effects. Decreases in abundances as a
result of habitat fragmentation were observed in birds (BDFFP), spiders
(KFE), insects (KFE), butterflies (SRS), plants (SRS) and micro-
arthropods (MFE). On the other hand, increases in abundance driven by
fragmentation were observed in plants (KFE) and beetles (WW). How-
ever, when the effect of connectivity loss was isolated, there was a clear
trend toward negative effects, in line with our findings.

Our results suggest that habitat connectivity loss can be a cause of
strong impact on population abundance in stochastic environments,
where the occurrence of perturbations of diverse nature is the rule and
not the exception.

Of course, for this effect to occur fragmentation should impede
movements of individuals across non-connected patches. As claimed in

Caley Julian et al. (2001), there could be species whose organisms are
insensitive to fragmentation due to their high mobility. Therefore, the
same physical force of habitat division could affect the connectivity of
species among patches in diverse degrees. This study opens opportu-
nities for extending our model to more realistic scenarios, such as
multispecific assemblages with varying degrees of organism's mobility,
simultaneous habitat divisions that occur at different rates, and in-
cluding other environmental phenomena that often co-occur with ha-
bitat division, such as habitat loss, degradation, and biological inva-
sions. Fragmentation of both terrestrial and aquatic ecosystems will
continue to occur on earth, for which it is necessary to develop a deeper
understanding of the nature, underlying mechanisms and ecological
consequences of this process, in order to build a more solid, explanatory
and predictive theory of habitat fragmentation, useful also for designing
better management practices.

6. Code availability

For simulation analysis we used MATLAB version 2016a (The
Mathworks Inc., Natick, Massachusetts). The complete code is available
from the authors upon request.
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Appendix A. Proof of Theorem 1

Considering the integral representations for the system of equations (5), we have

∫− ≤ − + ∈α t β t α t β t s t T| ( ) ( )| | ( ) ( )| |Δ( )|ds, [0, ],i i t

t

i (14)

where =α x m(·) (·)/A A, =β x m(·) (·)/B B and

= −∪ ∪s α r D β r DΔ( ) { [ ]} { [ ]}.A B s A s B( ) ( )

Using the Maclaurin series introduced in (6), it follows that
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with = −r b dk k k, ≥k 0. Denoting by ω α β s( , )( )k the summands in parentheses in the above equality, it follows that
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Assuming =λ m A m B( )/ ( ), the densities defined in (7) and (8) can be written as
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It is straightforward to prove that = =∪ ∪
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1 , for ∈ −μ η η{ , }1 . In addition, the function ∪D η( )A B s( ) (respectively ∪D η( )A s B( ) ) is
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The inequalities in (15) imply the bounds
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Hence
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Let us define = +M D D D t D tmax{ * *, * ( ), * ( )}A B A i B i . Then ≤α t β t M( ), ( ) for each ≥t ti. Indeed, if there exists >t ti1 with > ≥α t M α t( ) ( )i1 , then
there exists ∈t t t( , ]i2 1 such that >α t M( )2 and ′ >α t( ) 02 . However, > +α t D D( ) * *A B2 implies ′ <α t( ) 02 , a contradiction. Similarly, it is possible to
prove that ≤β t M( ) .

Then α (·) and β (·) are bounded functions. Therefore, from (16), we have ≤ − +ω α β s α s β s k M| ( , )( )| | ( ) ( )|(1 )k
k, which implies

∑≤ − ∈
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s α s β s γ s t T|Δ( )| | ( ) ( )| , [ , ],
k

k i
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where = +γ r k M k| (1 ) / !k k
k . Note that∑ γk converges because the series∑ r Dk

k does.
Therefore, there exists >M 0 such that ≤ −s M α s β s|Δ( )| | ( ) ( )|, for each ≥s ti. Using (14) and Gronwall's Inequality (Sotomayor, 1979), we

obtain that − ≤ − −α t β t α t β t e| ( ) ( )| | ( ) ( )|i i
M t t( )i , for any ∈t t T[ , ]i . Since =α t β t( ) ( )i i , we have =α β(·) (·). So the first part of (a) is proved.

Finally, since =α β(·) (·), we have that =∪D DA B t A( ) and =∪D DA t B B( ) for ∈t T[0, ]. Then ′ =x x r D[ ]C C C , for any ∈C A B{ , }. Therefore,
= +x x x(·) (·) (·)A B satisfies ′ = + + − +x x r D x r D x r D x x r D[ ] [ ] [ ] ( ) [ ]A A B B A BΩ Ω and it is straightforward ( = =D D DA B Ω) to conclude (3). □

Appendix B. Proof of Theorem 2

We will compare the first two derivatives of χ (·) with those of the sum +x x(·) (·)A B . Note that at ≤ ≤t t0 i, we have

′ + ′ = +∪ ∪x x x r D x r D[ ] [ ].A B A A B t B A t B( ) ( ) (18)

Since =η (·) 1 on t[0, ]i , the right side of (18) is equal to + = +∪ ∪x r D x r D x x r D[ ] [ ] ( ) [ ]A A B B A B A B Ω . That is, ′ = ′ + ′χ x xA B at ≤t ti.
Moreover, for ∈t t t[ , ]i f , we have
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where if =p A (respectively B), then =q B (respectively A).
Developing ′∪Dp q t( ) from (19) and evaluating at =t ti and using the fact that χ (·) and +x x(·) (·)p q , and their first derivatives, have the same

value, we obtain
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i.e., the expression (19) can be represented by
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So that + >x x χ(·) (·) (·)A B in a neigbourhood to the right of =t ti if − − <x x x m x m( )( / / ) 0A B A A B B , which is a condition equivalent to those given
in Theorem 2. □

Appendix C. Rational Smith's Daphnia magna per capita rate

In Smith (1963), Smith, in order to describe the growth of D. magna, introduces the following per capita rate:

=
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, 0,0
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where r0 and c are some positive constants. Note that, the above function is analytic on ∞ +[0, ) and its series development is given by
=r D r φ D D[ ] ( / *)0 Ω , where = − + − + − + ⋯φ ω ω c ωc ωc ωc( ) 1 (1 )(1 ( ) ( ) )2 3 , when < −ω c 1.

With this per capita rate, the system (9) can be expressed as
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where =K m C D( ) *C Ω, with ∈C A B{ , }, are the subregional carrying capacities when the habitat fragmentation is completed.
Let us consider an interval of fragmentation =t t[ , ] [0, 50]i f , as a subset of =T[0, ] [0, 100], and the parameters that follow:

b0 d0 D*Ω m A( ) m B( )

2/10 1/10 10/3 180 30

Note that with these parameters, =r 1/100 , =K 600A , =K 100B and =c 0.5.
Fig. 5 illustrates the case of a linear connectivity function = = − −η t ξ t t t t t( ) ( ) ( )/( )f f i , ∈t t t[ , ]i f , and initial conditions =x (0) 100A and
=x (0) 50B . Note that, =x x(0)/ (0) 1/2B A and =m m/ 1/6B A , then we are in case (a) of Theorem 2.
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